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Sidney Holt and Ray Beverton are primarily recognized for developing the basis of demographic stock assessment modelling, but their endur-
ing legacy continues to influence and guide advancements in many fields of fisheries science. Although largely forgotten, their contributions
to spatial modelling laid the foundation for a variety of applications in aquatic and terrestrial populations. Spatial modelling approaches are
rapidly evolving beyond even the visionary scope of Beverton and Holt due to advancements in understanding of spatial population structure,
collection of spatially explicit data, and statistical parameter estimation. A review of Beverton and Holt’s original movement models demon-
strates that understanding the origins and basic underlying assumptions can help ensure that current models are consistent with fundamental
principles. Additionally, recent simulation studies show that conforming to or revising spatial model assumptions is essential for accurate esti-
mation. As fisheries science transitions to more complex spatial stock assessment models, understanding their conceptual development and
the lessons learned by our predecessors is essential for proper model specification and application.
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Introduction
Beverton and Holt’s (1957) On the Dynamics of Exploited Fish

Populations is a timeless contribution to the scientific literature

that is constantly being “rediscovered” by scientists when devel-

oping state-of-the-art fisheries models (Holden, 1995; Pitcher

and Pauly, 1998). Their book continues to be one of the most

highly cited fisheries publications (Branch and Linnell, 2016;

Figure 1). It covers a breadth of visionary topics, many of which

have yet to be fully investigated six decades after its first printing.

Daniel Pauly (Fisheries Professor, University of British

Columbia) mused in his foreword to the 1993 reprint:

“I wonder what example will be used for illustrating

Beverton and Holt’s anticipation of ideas when, in a few

years or decades, another reprint. . .is presented to a new

generation of fishery scientists?”

Beverton and Holt (1957) recognized that spatial variation and

connectivity were primary drivers of population dynamics and

sustainable harvest levels. Section 10 of Beverton and Holt

(1957), titled Spatial Variation in the Values of Parameters:

Movement of Fish within the Exploited Area, is relatively brief,

composing less than 30 of the more than 500 pages of the original

Published by International Council for the Exploration of the Sea 2021. This work is written by US Government employees and is in
the public domain in the US.
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tome. However, since the early 2000s, citation rates related to spa-

tial components of Beverton and Holt’s models (Figure 1) have

remained consistently high.

The range of citations indicate that their movement models

have been adapted across an array of disciplines in both aquatic

and terrestrial ecology, including theoretical simulations on the

impact of movement dynamics across landscapes and seascapes,

tagging analyses, implementation of marine protected areas

(MPAs), exploration of larval dispersal and recruitment dynam-

ics, determination of demographic heterogeneity, and spatial

population models (Figure 2). In particular, Beverton and Holt’s

original analyses have been incrementally adapted for use in the

field of quantitative stock assessment, first as the basis of spatial

yield-per-recruit models (Goethel et al., 2016) and, more recently,

spatially explicit length-based or age-based stock assessment

models (Cadrin and Secor, 2009; Goethel et al., 2011).

Several technological developments since Beverton and Holt’s

(1957) publication have facilitated the resurgence of interest in

the implementation of movement models for use in stock assess-

ment applications. For centuries, fishery catch and effort data

have been reported by fishing grounds (e.g. Fulton, 1889), and

fishery recaptures of tagged fish have informed general movement

patterns (Hall, 2014), but the spatial resolution of fishery data

was usually low and accuracy was difficult to verify. The develop-

ment and application of vessel monitoring systems and other

forms of electronic monitoring have improved the spatial resolu-

tion and quality of fishery data (e.g. Van Helmond et al., 2020).

Similarly, fishery-independent surveys are widespread, which pro-

vide spatially explicit information on relative density for many

fishery resources (Gunderson, 1993; Thorson, 2019). High-reso-

lution information on movement is also available from electronic

tagging and “natural tags” (e.g. parasites, otolith chemistry, and

genetic stock composition, Cadrin et al., 2014). Concomitantly,

there has been increased recognition that better engagement of

stakeholders in both data collection and participatory modelling

initiatives can lead to direct incorporation of rich and often spa-

tially resolved local ecological knowledge into assessment and

fisheries management frameworks (Röckmann et al., 2012;

Sampedro et al., 2017; Sun et al., 2019). Finally, rapid advances in

computing power, statistical parameter estimation techniques,

Figure 1. Publications citing Beverton and Holt (1957; grey bars, N¼ 1856) along with the subset of these citations associated with spatial
processes (black bars, N¼ 104) and major events (vertical lines) subsequent to publication of Beverton and Holt (1957), including the two
reprints, a journal special issue, and an edited book celebrating the publication of the original book. Publications were identified using the
Web of Science Core Collection database (October, 2020), which included years 1965–2020. Citations of clear typographical errors of any
version of Beverton and Holt (1957), including the 1993 and 2004 reprints, were included.
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and integrated modelling approaches (Maunder and Punt, 2013;

Zipkin and Saunders, 2018) support the application of the spatial

models initially developed by Beverton and Holt. Punt et al.

(2020) illustrate the growing importance of spatial modelling by

concluding that the next generation of stock assessment models

must incorporate the ability to model spatial structure and

connectivity.

Although spatial assessment models are much more complex

than Beverton and Holt envisioned, the basic tenets and simplify-

ing assumptions used in these models can be traced back to their

1957 book (Schwarz, 2005; Goethel et al., 2011). Most scientists

recognize that progress is only possible by “standing on the

shoulders of giants” (Hilborn and Liermann, 1998; Anderson,

2011), and understanding those foundations is essential for ad-

vancing science. Quinn (2003) observed “. . . a tendency among

modern researchers to ignore the historical literature, which

results in failure to appreciate the origins of modern fisheries sci-

ence and reinventions of already published methodology.” In the

case of fisheries science, and especially stock assessment, under-

standing the past necessitates study of Beverton and Holt (1957).

As Holden (1995) noted:

“reading [Beverton and Holt, 1957] will take [you] back

not only to the fundamentals upon which all modern work

is based but more importantly, might cause [you] to think

more about what [you] are doing. It is my experience that

too many research workers are prepared to slip the

appropriate disk in their computer, load the program and

analyse their data without having the slightest idea of what

the program is calculating, whether the method of analysis

is appropriate and what the results mean.”

Therefore, we review Beverton and Holt’s (1957) ideas on incorpo-

rating spatial structure and connectivity, then provide a brief his-

tory of how their simple models developed into current methods

and applications for spatially explicit versions of tagging, yield-per-

recruit, and stock assessment models. We conclude with a discus-

sion of how the assumptions of their basic models can be adapted

to account for the complex spatial population structures often ob-

served in marine resources and how we envision their work being

incorporated into the future of spatial population modelling.

Early migration research and the emergence of
quantitative fisheries science
Spatiotemporal changes in fish abundance resulting from larval

dispersal, foraging behaviour, and temporary or permanent

migrations have intrigued scientists since the field of ecology

emerged. Anderson (1746) presented the premise that panmictic

stocks undergoing large-scale migrations could explain fluctua-

tions in fishery production. He hypothesized that herring migrate

from their “home” under the polar ice cap in search of food when

the population outgrew the available prey and arrived at various

fishing grounds at different periods during this migration

Figure 2. Citations of Beverton and Holt (1957) from Figure 1 related explicitly to spatial processes (N¼ 104) delineated by category.
General categories include: development of theoretical movement models (Movement Models; N¼ 20); identifying the spatial distribution of
a resource or harvesters (Distribution; N¼ 13); addressing spatiotemporal demographic heterogeneity (Demographics; N¼ 12); implementing
and modelling marine protected areas (MPAs; N¼ 12); developing spatially explicit population models (Population Models; N¼ 12);
accounting for larval dispersal and spatial recruitment dynamics (Stock-Recruit; N¼ 11); estimating movement from mark-recapture data
(Tagging; N¼ 9); including spatial structure in harvest control rules and biological reference points (Management/BRPs; N¼ 6); development
of spatiotemporal species distribution models (Spatiotemporal Models; N¼ 6); and exploring spatial population structure and stock
identification (Population Structure; N¼ 3).
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(Wegner, 1996; Chambers and Trippel, 1997; Sinclair 2009). The

“migration” theory remained a prominent viewpoint well into

the early part of the 20th century, when research on herring

(Heincke, 1898) and cod (Hjort, 1914) demonstrated that differ-

ent spawning “races” or populations existed within a given spe-

cies, which underwent small-scale spawning and feeding

migrations. In contrast to the migration hypothesis, “population

thinking” posed that fishery fluctuations were caused by year-

class variability within geographically distinct populations

(Sinclair, 1988; Chambers and Trippel, 1997; Secor, 2002;

Sinclair, 2009). However, the cause of fishery fluctuations was still

very much under debate when the 1902 inaugural International

Council for the Exploration of the Seas (ICES) delegation met,

which was demonstrated by the corresponding vote to form

“Committee A” to investigate the role of migration theory com-

pared to population thinking for explaining variability (Smith,

1994; Sinclair, 1997; Anderson, 2002; Rozwadowski, 2002). As the

fledgling field of fisheries science began to develop in the early

1900s, understanding the implications and scales of fish move-

ment continued to be a primary goal.

In the early 1900s, ecology slowly began to turn towards mathemat-

ics in order to develop modelling tools to predict and understand na-

ture (Kingsland, 1995; Quinn, 2003). In fisheries science, F. I. Baranov

is considered by many to be the “grandfather of fisheries population

dynamics” (Quinn, 2003) for his theory of fishing and resultant catch

equation (Baranov, 1918), even though his models were initially criti-

cized and not seen or accepted by the western world until decades later

(Beverton and Anderson, 2002; Sharov, 2020). Russell (1931) built on

Baranov’s theory for his energy balance equation of fish population

growth, while Hjort et al. (1933) developed a “theory of fishing” based

on analysis of aging data which demonstrated that the optimal rate of

fishing occurred at intermediate exploitation rates (Holt, 2014).

Thompson and Bell (1934) subsequently calculated the yield that

resulted from different combinations of natural and fishing mortality.

These contributions were followed by von Bertalanffy’s (1938) growth

equation, Graham’s (1939) introduction of maximum sustainable yield

(MSY), and Ricker’s (1944, 1945) work on instantaneous mortality

rates and statistical methods for use in fisheries models. Finally, a short

publication in Nature by Henry Hulme (an accomplished British

mathematician) with Raymond Beverton and Sidney Holt (Hulme et

al., 1947) synthesized much of the previous modelling work into “a

single, age-based yield equation as a function of recruitment, growth,

natural mortality, and fishing mortality, commonly referred to as the

‘yield-per-recruit equation’” (Anderson, 2011).

These early theories and model developments set the stage for

one of the biggest breakthroughs in quantitative ecological model-

ling, which became the foundation of theoretical fisheries science

in the form of Beverton and Holt’s (1957) On the Dynamics of

Exploited Fish Populations (Smith, 1988, 1994; Anderson, 2002;

Quinn, 2003; Angelini and Moloney, 2007). Their book “probably

constitutes the single most important contribution to fisheries sci-

ence yet published” (Hilborn, 1994) and is widely regarded as “the

most cited reference in fishery science” (Anderson, 2011). Most of

the initial applications of Beverton and Holt’s “fundamentals of

the theory of fishing” related to the catch equation, yield-per-re-

cruit analysis, and stock-recruit functions (Holt, 1998, 2008). As

recognized by Pauly (1986), the “theories of fishing” and models

developed by early fisheries population modellers, which were cod-

ified in Beverton and Holt (1957), implicitly assumed a “unit”

stock that ignored immigration, emigration, and spatial heteroge-

neity. However, Beverton and Holt understood that the cause of

fishery fluctuations were unlikely to be resolved without account-

ing for spatial dynamics, which had driven ecological research

around the turn of the century, yet had been largely ignored during

the subsequent development of quantitative fisheries methods.

Thus, in the latter parts of Beverton and Holt (1957) they provided

a succinct, yet thorough derivation of how movement could be

accounted for in fisheries population models, as well as, tagging

and yield-per-recruit analyses. Although their spatial models re-

ceived less attention than the fundamental demographic models,

they represent an important contribution to the fields of spatial

ecology and population modelling.

Beverton and Holt’s movement models
Although Beverton and Holt (1957) developed a quantitative theory

of fisheries that helped fisheries science leapfrog mathematical appli-

cations in terrestrial ecology (Worthington and Skellam, 1958), their

treatment of movement relied heavily on the derivation of the ran-

dom diffusion of animals developed by Skellam (1951). Skellam

(1951) modified the logistic population growth model to include

two-dimensional movement by adopting the kinetic theory for the

physical diffusion of gases to represent large-scale animal movement

and plant dispersal. Skellam’s approach was unique because it incor-

porated movement processes into population models and linked the

actions of individuals with the expansion of a population over both

time and space (Toft and Mangel, 1991).

Beverton and Holt (1957) rationalized the simplifying assump-

tion of random diffusion for representing a fish’s general foraging

strategy by suggesting that (p. 137):

“. . . we can imagine a bottom-living fish such as a plaice mov-

ing in a certain direction until it encounters a patch of food

organisms, and after spending some time more or less station-

ary while feeding on these continuing the search for food in a

direction which is random with respect to that in which it first

approached the patch of food organisms. In this case the ‘inter-

patch’ movement would be analogous to the ‘mean-free-path’

in the kinetic theory of gases and would be the level at which

the random direction component is introduced.”

Therefore, the implied mechanism for continuous mixing of bor-

dering populations was the small-scale movement of individuals

(Goethel et al., 2011). However, as Skellam (1951) demonstrated,

each movement did not need to be random, and the frequency of

movement could be used to determine the spatiotemporal scale at

which movement could be considered random.

Beverton and Holt (1957) developed two movement model

formulations. The first followed Skellam’s (1951) framework

closely and was used for calculating the change in concentration

from a given point, which was termed the “dispersion” model

and based on the Fickian diffusion equation (Porch, 1995a). The

change in density (or concentration, C) of fish within a two-di-

mensional region (x, y) over time (t) was described by

@C

@t
¼ D

4

@2C

@x2
þ @

2C

@y2

 !

D ¼ V 2

n
¼ Vd ¼ nd2;

1

in which D was the dispersion coefficient, V was the velocity of

movement, and d was the distance of the mean free path (i.e. the
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average distance travelled between interactions that altered direc-

tion or other attributes; e.g. for gas particles this implies the dis-

tance between successive collisions), and n was the number of

random movements per unit time. The dispersion model was ap-

plied to a time series of inshore and offshore abundance indices for

North Sea Plaice (Pleuronectes platessa) assuming unidirectional

offshore movement. The model was able to accurately recreate ob-

served relative abundance patterns throughout the time series.

Beverton and Holt (1957) suggested that the mean free path

may be more affected by external factors (e.g. predator or prey

abundance) than by the concentration of the species being mod-

elled (converse to the strict tenets of the kinetic theory of gas par-

ticles). This assumption was later embodied in the ecological

theory known as the ideal free distribution, wherein the distribu-

tion of a species across space is proportional to the availability of

free resources in each habitat patch (Fretwell and Lucas, 1969).

Although the theory has been refined over time and adapted to

include a variety of factors influencing the distribution of a spe-

cies (e.g. animal personality; DiNuzzo and Griffen, 2020), the the-

oretical basis remains widely employed and represents a useful

concept (Avgar et al., 2020). In fisheries, for instance, MacCall’s

(1990) “Basin Theory” models fish movement as a density-depen-

dent process based on the ratio of abundance to carrying capacity

across the distribution, which demonstrates how diffusion models

can be refined by incorporating directed components (termed ad-

vection; discussed later in this section) that are linked to resource

availability (e.g. prey abundance). Thus, although not strictly

based on Beverton and Holt’s (1957) diffusion models, frame-

works utilizing the ideal free distribution follow the same under-

lying assumptions about random diffusion and generally support

Beverton and Holt’s (1957) interpretation of the mean free path

as it relates to animal movement.

Application of the dispersion model required information on

the location and time for each density observation, which was often

not supported by traditional fisheries data (e.g. historical catch

data). As a practical solution, Beverton and Holt (1957) developed

a spatially discrete approximation to the dispersion model, which

described the change in the abundance of fish (N) within spatial

regions due to the instantaneous rate of diffusion (s; termed the

transport coefficient) across a given region’s boundary:

dN

dt
¼ �sN : 2

The transport coefficient represented a spatially discrete expres-

sion of the spatially continuous dispersion coefficient. Although

the spatial discretization retained the basic tenets of random dif-

fusion, it was better suited for the spatial resolution of traditional

fisheries data (i.e. spatially stratified management units).

Following from 2, the total change in abundance within two adja-

cent regions (subscripts 1 and 2) could then be described as a

function of fishing mortality (F), natural mortality (M), and dif-

fusion across the shared border:

dN1

dt
¼ � F1 þM1 þ s1!2ð ÞN1 þ s2!1N2

dN2

dt
¼ � F2 þM2 þ s2!1ð ÞN2 þ s1!2N1:

3

However, solving this system of equations required complex and

time-consuming numerical simulation, the feasibility of which

was limited due to the lack of digital computers (Goethel et al.,

2011; Porch, 2018).

The finite difference approximation of the transport coefficient

model with respect to time was developed and applied by

researchers in the 1980s and 1990s using both tagging (e.g. Ishii,

1979; Sibert, 1984; Hilborn, 1990) and full population models

(e.g. Quinn et al., 1990, Punt and Butterworth, 1994; Porch,

1995b). The resultant fully discretized version utilized difference

equations that could be solved analytically, which became known

as the “box-transfer” model. The box-transfer model utilized a

transfer coefficient (T), the temporally discretized approximation

to the transport coefficient, to represent the fraction of a popula-

tion in a region that moved during a yearly time step, y:

N1;yþ1 ¼ ð1� T1!2ÞN1;y e�ðF1;yþM1;y Þ þ T2!1N2;y e�ðF2;yþM2;y Þ

N2;yþ1 ¼ ð1� T2!1ÞN2;y e�ðF2;yþM2;y Þ þ T1!2N1;y e�ðF1;yþM1;y Þ:
4

The approach represents a discrete Markovian movement model, be-

cause the probability of movement is the same for all fish in a region

in a given year, regardless of their movement histories. The box-trans-

fer model is analogous to the simplification of random diffusion in

Newton’s Law of Cooling given that both approaches are spatially dis-

cretized approximations of continuous theoretical models, which rely

on assumptions of uniformity within the region (or object) of study

(Beverton and Holt, 1957). For instance, Newton’s Law assumes no

temperature gradient within the radiating body, and the box-transfer

model assumes no gradient in fish density appears throughout a geo-

graphic zone (Sibert et al., 1999).

The main underlying assumption of the spatiotemporally con-

tinuous Fickian dispersion model, the spatially discrete and tem-

porally continuous transport coefficient model, and the

spatiotemporally discrete box-transfer model is the representation

of fish movement as random diffusion. However, the assumption

allows for small-scale non-random movements that result in a net

diffusive movement when viewed from a population-level spatial

scale (Sibert et al., 1999). Beverton and Holt (1957) also investi-

gated how a directed migration term could be incorporated,

termed advection (Sibert and Fournier, 1994; Porch, 1995a).

Their mostly qualitative advection–diffusion model partitioned

the transport coefficient into upstream and downstream constitu-

ents based on dominant currents. Thus, Beverton and Holt

(1957) demonstrated that the random movement assumption

does not preclude incorporation of large-scale non-random pro-

cesses, such as directed migrations (e.g. Jones 1959). However,

they warned that careful consideration of these processes was

warranted to ensure that model extensions adhered to the under-

lying assumptions, especially if the primary condition of move-

ment as a random process, which stated that individual

movements were independent, was violated (Codling et al., 2008;

Smouse et al., 2010). Okubo (1980) demonstrated that the addi-

tion of an advection term in 1 represented the limiting form of an

uncorrelated but biased (i.e. directional) random walk, whereas a

Markovian random walk could be used to approximate the mean

free path and purely random diffusion (i.e. as the bias term went

to zero). Adding structure into a biased but uncorrelated random

walk to account for migration behaviour, attraction to environ-

mental gradients (e.g. temperature or prey fields), or carrying ca-

pacity is relatively straightforward (Sibert et al., 1999). Although

home range behaviour, large-scale schooling, aggregation, and

movement patterns of behavioural contingents (Secor, 1999),

Beverton and Holt spatial models 5
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which are common for pelagic fish, would violate the indepen-

dent movement assumption, these dynamics can be addressed

through appropriate alterations to modelling assumptions and

the underlying movement process (e.g. use of correlated random

walks or mean-reverting processes, see Section 5 Implications for

Violation of and Recent Modifications to Beverton and Holt’s

Movement Model Assumptions; Codling et al., 2008; Smouse et

al., 2010; Albertsen, 2019).

Similarly, an important implication of the spatial discretization in

the transport and box-transfer models is that s and T are functions of

each region’s perimeter (i.e. the size and shape of the geographic unit

being modelled) as well as movement. By contrast, D in the dispersion

model is only a function of movement (i.e. velocity). Beverton and

Holt (1957) urged that the performance of the spatially discrete mod-

els would be enhanced if populations or areas were divided into spa-

tial strata or regions that were “as small as is consistent with the

accuracy of commercial statistics of catch and effort, since the smaller

the size the more faithful will be the representation obtained.”

Additionally, Beverton and Holt’s (1957) diffusion models also as-

sume that fish instantaneously move during a time step, become

“well-mixed” once crossing the boundary between regions, and that

all fish in a region have the same probability of residence and move-

ment. In reality, fish that are close to the border are more likely to

cross the boundary, but at a population level, the relative rates at dif-

ferent locations within a region are likely to average out and suffi-

ciently represent region-wide movement patterns. Despite these

limiting assumptions, Beverton and Holt’s (1957) diffusion models

can often adequately approximate fish movement processes (Hilborn,

1990; Porch, 1995a; Goethel et al., 2011).

Despite the box-transfer model being a gross simplification of

the dispersion model, the greater utility of the box-transfer concept

can be appreciated in the context of the even simpler “unit stock”

concept (Cadrin and Secor, 2009). Most conventional stock assess-

ment models assume no movement across stock boundaries and

complete mixing within stock areas. Allowing for connectivity and

spatial variation in demographic parameters among regions or si-

multaneously modelling multiple population units is a meaningful

step towards realism and a better understanding of population

processes that can be supported with existing information (Berger

et al., 2017b; Punt, 2019a, b). Sibert et al. (1999) argue that “the

challenge for fisheries is not whether the diffusion framework is

suitable, but rather to explicitly include population movement and

spatial structure in stock assessment models. Diffusion models are

one class of models that appear to work.” Beverton and Holt

(1957) end their section on dispersal by suggesting that care should

be taken when applying movement models because of the approxi-

mate nature and reliance on spatially explicit data: “. . . neither

knowledge of the mechanisms of dispersion nor accuracy of data

and commercial statistics is sufficient to justify the labour involved

in a rigorous treatment . . .”. Additional barriers to applying their

models included the lack of complex statistical methods and the as-

sociated computing power needed to estimate numerous parame-

ters. However, the basic tenets for incorporating spatial

heterogeneity and movement within various types of fisheries

models saw both immediate and long-term application.

Revival and adaptation of Beverton and Holt’s
movement models in fisheries science
The single-species demographic convention of stock assessment

grew out of Beverton and Holt’s (1957) treatise. Although

assessment scientists recognized that fish move and that “closed’

population assumptions were violated by many species, the parsi-

monious nature of model development, data limitations, and

technological constraints precluded complex stock assessment

models involving multiple areas and movement. Thus, the aspect

of Beverton and Holt’s (1957) work on spatial modelling that

gained the most immediate traction was the incorporation of

movement into tagging analyses. Once estimates of connectivity

from tagging data became more widely available, researchers be-

gan applying extensions to yield-per-recruit (YPR) models to ac-

count for movement of fish and spatial heterogeneity in

population parameters. YPR approaches provided a relatively

simplistic modelling framework and basic data needs for the pro-

vision of management reference points, as compared to full stock

assessment frameworks that allowed estimation of abundance and

mortality. The complementary advance in computing power led

to the “golden age” of quantitative fisheries modelling in the

1980s and 1990s (Quinn, 2003). By the mid-1990s, spatial data

collection and statistical modelling had advanced to a point that

the application of Beverton and Holt’s (1957) movement models

could be supported within spatial stock assessments (Berger et al.,

2017b). We briefly explore the temporal development of applica-

tions of Beverton and Holt’s (1957) movement models within

fisheries science, starting with tagging models, and concluding

with state-of-the-art spatially explicit tag-integrated stock

assessments.

Application of Beverton and Holt’s models for analysis of
tagging data
Analysis of tagging data has evolved, from descriptive mapping

and statistics of opportunistic release-recapture data that docu-

ment movement patterns (Hall, 2014) to more structured release-

recapture designs and model-based analysis to estimate movement

rates (Amstrup et al., 2006). As Goethel et al. (2011) outline, two

general methods to analyse tagging information developed out

of Beverton and Holt’s (1957) movement models: the advection–

diffusion–reaction (ADR) models and box-transfer models. The

differences in model structure were largely driven by the available

data and the goal of the analyses (Goethel et al., 2011). The disper-

sion model, as altered to account for advection and diffusion,

allowed for identification of both random diffusion rates and di-

rectional migrations from specific release points. But, the disper-

sion or ADR approach required the availability of relatively precise

release and recapture information. Soon after Beverton and Holt’s

(1957) publication, Jones (1959) applied the dispersion model in

his analysis of tag returns for haddock (Melanogrammus aeglefinus)

off the Scottish coast using the assumption that there was a “. . .
superimposed directional component of the movement such that

the centre of density of the whole fish group actually moves with

some velocity . . .,” which was further explored for yellowfin tuna

(Thunnus albacares) in the Eastern Pacific by Bayliff and

Rothschild (1974).

Following Okubo’s (1980) derivation of the advection–diffu-

sion model as a biased random walk, the dispersion model

morphed into modern ADR models developed in a series of

applications that analysed tagging data to estimate movement

rates of Pacific tunas. Deriso et al. (1991) analysed data from two

dart tagging experiments for eastern Pacific yellowfin tuna by es-

timating velocity, diffusion, and “direction” (i.e. advection) and

deriving discrete transition probabilities among a uniform grid of
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spatial strata. Sibert and Fournier (1994) simulation tested advec-

tion–diffusion models to evaluate model performance with spa-

tiotemporal patterns in tag recoveries. Sibert et al. (1999)

developed a general ADR model framework, which utilized finite

difference approximations, to estimate movement and mortality

of skipjack tuna. Results indicated that the movement model had

advantages over a spatially aggregated model for estimating mor-

tality. The generalized ADR model has since been applied widely

to analyse conventional and electronic tagging data for many

tuna fisheries (e.g. Sibert and Fournier, 2001; Adam and Sibert,

2002). Kleiber and Hampton (1994) analysed data from tagged

skipjack tuna with an advection–diffusion–mortality model that

included attraction parameters for islands and fish aggregation

devices. Such attraction parameters have been widely applied to

expand ADR movement models by incorporating habitat attrac-

tion covariates, which set the advection component proportional

to a habitat preference index. Habitat preference has been based

on either abiotic factors (e.g. sea surface temperature) or prey

density (Bertignac et al., 1998; Faugeras and Maury, 2007;

Lehodey et al., 2008). In general, models that actively account for

the causal behaviour leading to movement (i.e. when a heteroge-

neous home range is optimally utilized for differing processes like

foraging, safety, or movement; Getz and Saltz, 2008) are becom-

ing more widespread, especially with the increased collection of

electronic tagging data (Patterson et al., 2008), but applications

to marine fish species are often limited by data constraints.

Extensive spatially resolved data allow fine-scale grids to be

implemented in Sibert et al.’s (1999) finite difference approxima-

tion to ADR models, but data gaps often limit the spatial scale at

which estimation models can be applied (Sibert and Fournier,

1994; Goethel et al., 2011). However, the ADR approach has be-

come the basis for many fine-scale, quasi-estimation population

simulation models that explore ecosystem functioning along with

biotic and abiotic drivers of population dynamics (e.g.

SEAPODYM; Lehodey et al., 2008; Senina et al., 2020).

In one of the only applications of the transport coefficient

model, Miller and Andersen (2008) modelled movement of

Atlantic bluefin tuna (Thunnus thynnus). Using a continuous

time, discrete space framework allowed modelling movement and

mortality processes simultaneously as instantaneous rates.

Although modelling movement as a continuous process may re-

duce bias compared to discrete time models if large-scale move-

ment patterns occur throughout the time step, assuming a

continuous movement rate may impose bias if movement occurs

during a brief period of time (e.g. if fish are relatively sedentary,

but undergo a long-range spawning migration at a well-defined

point in time).

Use of the box-transfer movement model has been widely ap-

plied where tagging data are used to estimate movement rates be-

tween geographic zones by matching observed and predicted tag

recaptures by region. The simplified dynamics, including closed

form solutions in most instances, and ability to estimate parame-

ters from coarse data have often been cited as rationale for using

the box-transfer model (Sibert et al., 1999; Sippel et al., 2015).

Box-transfer models are more amenable to modelling the net dy-

namics of the entire population within a given region, as opposed

to the focus on dispersion from a specific release point or location

within a species distribution (Goethel et al., 2011; Sippel et al.,

2015). Ishii (1979) investigated the movement of tagged yellowfin

tuna (Thunnus albacores) in coastal Mexico, and Sibert (1984)

used a similar approach to model the transfer of tagged skipjack

tuna (Katsuwonus pelamis) in the South Pacific. Hilborn (1990)

provided a generalized tagging model based on Beverton and

Holt’s (1957) original work that calculated predicted tag returns

for multiple regions using a maximum likelihood formulation to

estimate model parameters, such as transfer and harvest rates.

The box-transfer approach has been widely utilized and adapted

over the last two decades to account for complex movement pat-

terns and alternate tag types (e.g. Kurota et al., 2009; Aires-da-

Silva, 2009; Eveson et al., 2012; Hanselman et al., 2015).

Additionally, habitat preference and spawning migrations can be

incorporated (e.g. Herbst et al., 2016).

Because box-transfer models simplify the movement dynamics,

they may suffer from scale dependency issues and often do not

explicitly account for directed movement. Conversely, the meth-

odology is more readily incorporated into population models,

particularly stock assessments, because they allow estimation of

population-level net movement parameters at which scale these

dynamic pool models often operate (Goethel et al., 2011; Sippel

et al., 2015). Thus, estimates of population scale movement from

box-transfer tagging models spurred the development of a variety

of spatially explicit stock assessment frameworks (Berger et al.,

2017b).

Spatial yield-per-recruit and marine protected areas
Based on the derivation of random diffusion, Beverton and Holt

(1957) adapted the YPR model to incorporate movement among

regions. In particular, they focused on the impact of implement-

ing different-sized closed areas when fish were allowed to move

across the boundary. Results indicated that closed areas effectively

delayed the age of recruitment to the fishery resulting in a shift

towards an older age structure, and slight increases in yield for

highly utilized stocks with moderate movement rates. As reviewed

in Guénette et al. (1998), Gerber et al. (2003), and Fogarty and

Botsford (2007), the closed area YPR models became the theoreti-

cal basis for the wide implementation of marine protected areas

(MPAs). Marine reserve models now often incorporate complete

life cycle models including stock-recruit relationships, hydrody-

namic-driven larval dispersal models, and complex adult move-

ment dynamics (e.g. diffusion, home range or aggregation

behaviour, and environmental forcing; Grüss et al., 2011;

Cornejo-Donoso et al., 2017; White et al., 2019). However, most

of these approaches are simulation models based on life history

information, while estimates and functional forms of juvenile and

adult movement are often based on expert opinion. Although

Punt and Ciu (2000) demonstrate how a spatial YPR model can

be applied with direct estimation from observed data, the ap-

proach does not attempt to estimate movement directly, instead

utilizing a functional form linked to length using the box-transfer

movement model. Once reliable estimates of movement rates be-

tween stock areas were available from tagging studies, movement

modelling was able to advance beyond the comparatively simple

equilibrium YPR models and begin exploring direct incorpora-

tion of spatial structure and movement in full stock assessment

frameworks.

Spatially explicit stock assessment models
The development of spatial stock assessment models can be cate-

gorized into three approximate phases: development (1957–

2001); exploration (2001–15); and application (2015–Present;

Table 1). The development stage was characterized by proof of
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concept studies demonstrating how spatial models could be

implemented based on Beverton and Holt’s (1957) relatively sim-

ple movement models, highlighting the data inputs required, and

culminating in the development of generalized assessment frame-

works that could account for spatial structure. Once the feasibility

of spatial stock assessments was established, the exploration phase

began to highlight the robustness of spatial models to process er-

ror and data limitations, often through simulation analysis. In the

last 5 years, as the reliability of spatial models has been more

thoroughly demonstrated, there has been a proliferation of spa-

tially explicit stock assessments that have now been utilized for

the provision of management advice, indicating progression into

the application stage of spatial models (Punt, 2019b). We briefly

outline each phase below.

Development Phase (�1957–2001)
Aldenberg (1975) is widely recognized as the first researcher to

explore the inclusion of movement into spatial stock assessment

applications using Beverton and Holt’s (1957) transfer coefficient

model. Despite the lack of an analytical solution preventing esti-

mation of parameters, Aldenberg (1975) demonstrated through

numerical simulation that migration was likely to result in biased

recruitment estimates when productivity differed greatly among

regions. Once the discretized box-transfer model (and the associ-

ated analytical solution) became widely recognized, a number of

modelling frameworks were developed concurrently in the early

1990s. Migratory catch-age analysis (Quinn et al., 1990) incorpo-

rated estimates of movement rates for Pacific halibut

(Hippoglossus stenolepis) from an external tagging model, which

helped reduce statistical bias in the spatial assessment model.

Spatially explicit VPA frameworks were used to investigate the ef-

fect of movement between the eastern and western Atlantic blue-

fin tuna (Thunnus thynnus) populations (e.g. Butterworth and

Punt, 1994; NRC, (National Research Council), 1994). However,

the inability of early spatially explicit assessments to analyse tag-

ging data directly within model frameworks led to a number of

limitations including loss of information, inconsistencies between

modelling assumptions, difficulty in determining error structure

and including uncertainty, and reduced diagnostic ability

(Maunder, 2001).

Early applications to Atlantic bluefin tuna utilized region-spe-

cific tag recapture ratios aggregated across years to help directly

estimate time-invariant movement among regions (e.g. Porch,

1995b; Porch et al., 1995; Punt and Butterworth, 1995; Porch and

Turner, 1998). However, the aggregated approach to fitting tag-

ging data often masked signals across years and did not always

provide improved estimates of regional abundance compared to

models that ignored movement (Porch et al., 1998). In the late

1990s, fully “tag-integrated” models were developed to analyse

tagging data directly within the assessment by incorporating a full

tag attrition sub-model and fitting the disaggregated, cohort spe-

cific tag recaptures (Maunder, 1998; Goethel et al., 2011).

Tagging models (e.g. Hilborn, 1990) were run as a sub-model

within the assessment, which contributed to a combined objective

function that simultaneously compared observed and predicted

tag recaptures along with typical fisheries data such as catch, age

or length composition, and abundance indices. Simultaneous sta-

tistical estimation of all parameters in the assessment, such as

movement rates and fishing mortality, was then undertaken, and

Table 1. The three periods of spatial stock assessment model development including influential research during each period.

Development Exploration Application

Time period description 1957–2001 2001–15 2015–Present
The initial period of spatial

modelling focused on
development of tools and
determination of feasibility.
Research during this period
provided applied proof-of-
concept studies.

The second period put emphasis
on exploration of model
robustness and identifying
critical aspects of spatial
dynamics that needed to be
incorporated. Research during
this period primarily utilized
simulation studies to determine
bias based on the known
underlying simulated dynamics.

The present period is characterized
by generalized stock assessment
models that allow for spatial
structure. A paradigm shift in
stock assessment modelling has
emphasized the use of applied
spatial assessment models as
the basis for fisheries
management advice, but
simulation testing remains a
fundamental aspect of current
spatial modelling research.

Influential research Beverton and Holt (1957) Maunder (2001) Li et al. (2015, 2018)
Aldenberg (1975) Miller et al. (2008) Punt et al. (2015, 2016, 2017, 2018)
Quinn et al. (1990) Drouineau et al. (2010) Fu et al. (2017)
Butterworth and Punt (1994) Cope and Punt (2011) Lee et al. (2017)
VPA 2-Box (Porch 1995b; Porch,

2018)
Taylor et al. (2011) Vincent et al. (2017, 2020)

Maunder (1998) Ying et al. (2011) Vigier et al. (2018)
MULTIFAN-CL (Fournier et al.,

1998; Hampton and Fournier
2001)

Carruthers et al. (2011, 2015) Goethel et al. (2019, 2020)

Punt et al. (2000) Hulson et al. (2011, 2013) Cao et al. (2020)
Porch et al. (2001) Su et al. (2012) Mormede et al. (2020)

Guan et al. (2013) Assessment Platforms
Goethel et al. (2015a,b) CASAL and CASAL 2 (Bull et al.,

2012)
McGilliard et al. (2015) SS3 (Methot and Wetzel, 2013)

SPM (Dunn et al., 2020)
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the parameters were applied to the tagged and untagged

populations.

Maunder (1998) developed one of the first statistical catch-at-

age (SCAA) based tag-integrated modelling frameworks and ap-

plied it to New Zealand snapper (Pagrus auratus) with multiple

stocks. The model was termed the integrated tagging and catch-

at-age analysis (ITCAAN) and was flexible and easily adapted to

various species (Maunder, 2001). Punt et al. (2000) developed a

similar model for school shark (Galeorhinus galeus) off Australia

by allowing for movement between two populations, under the

assumption that no interbreeding occurred (i.e. animals exhibited

natal fidelity). Eight regions were modelled assuming a monthly

time step with movement rates estimated for each time step using

tagging data from 1947 to 1999. The generic software package

MULTIFAN-CL (Fournier et al., 1998) was adapted to address

the spatial structure and movement dynamics of tuna in the

Western Pacific utilizing a length-based, tag-integrated frame-

work. Originally developed for western Pacific yellowfin tuna

(Thunnus albacares) distributed across seven spatial strata

(Hampton and Fournier, 2001), the spatially explicit tag-inte-

grated version of MULTIFAN-CL has since been applied to a

wide variety of tunas and billfishes (Punt, 2019a).

The body of research on spatial modelling with Atlantic bluefin

tuna resulted in the generalized assessment package VPA 2-Box

(2018), which has been widely used within the International

Commission for the Conservation of Atlantic Tunas (ICCAT)

community (and elsewhere) since the late 1990s. A unique addi-

tion in VPA 2-Box is the inclusion of both a diffusion and overlap

movement model, the latter accounted for natal homing behav-

iour by assuming fish of multiple populations intermixed

throughout the year based on estimated diffusion parameters, but

returned to their natal population to spawn. Taylor et al. (2011)

later developed the multi-stock age-structured tag-integrated

stock assessment model for Atlantic bluefin tuna, which used an

SCAA framework to model five geographic zones and incorpo-

rated multiple tagging datasets and tag types (i.e. conventional

tags, archival tags, and satellite tags).

Several generic assessment platforms have since incorporated

spatial structure, including Stock Synthesis 3 (SS3; Methot and

Wetzel, 2013), CASAL (Bull et al., 2012), and the Spatial

Population Model (SPM; Dunn et al., 2020), all of which utilize

the box-transfer approach. Each platform incorporates time- and

age-varying movement rates. For instance, SS3 incorporates a lin-

ear ramp to accommodate age-variation whereas CASAL assumes

that age-based movement is linked to maturity. CASAL and its suc-

cessor CASAL2 (https://github.com/NIWAFisheriesModelling/

CASAL2) also allow for density-dependent migrations based on

the relative abundance among regions, as well as, home fidelity be-

haviour (i.e. natal homing migrations similar to the overlap model

of VPA 2-Box). SPM provides the most flexible spatial structure

and movement parametrizations, which includes the ability to uti-

lize preference functions similar to many ADR approaches (Dunn

et al., 2020; Mormede et al., 2020).

Exploration phase (�2001–15)
Around the turn of this century, ignorance of spatial population

structure and connectivity became widely recognized as impor-

tant factors contributing to the decline of many important fisher-

ies worldwide (Smedbol and Stephenson, 2001; Hilborn et al.,

2003; Berkeley et al., 2004). Improved understanding of spatial

structure in marine populations through multidisciplinary stock

identification techniques (Cadrin et al., 2014) was impetus to

achieve alignment of biological and management boundaries

(Kerr et al., 2017; Cadrin, 2020), while simultaneously pursuing

spatial stock assessment approaches that could better account for

biocomplexity (Berger et al., 2017b).

Spatial stock assessment modelling in the 2000s and early

2010s was largely characterized by a mixture of exploratory appli-

cations and theoretical simulations. The goal was often to demon-

strate the feasibility of spatial modelling applications, compare

the results to existing non-spatial assessments used for manage-

ment, and explore potential biases in both modelling approaches

through simulation analysis (Cadrin et al., 2019). For instance,

Goethel et al. (2015a) developed a three-region spatial metapopu-

lation model of yellowtail flounder (Limanda ferruginea) off New

England and applied it to available fishery, survey, and mark-re-

capture data. The approach was then utilized to develop a tailored

operating model to test the robustness of various parametriza-

tions of spatial and non-spatial assessment models to density-de-

pendent movement, data uncertainty, and tagging assumptions

(Goethel et al., 2015b). A similar framework was undertaken for

Bering Sea pollock (Theragra chalcogramma) in which Miller et

al. (2008) developed a spatially explicit model, which was then

simulation tested to explore the potential benefits of developing a

hypothetical mark-recapture program (Hulson et al., 2011) and

the robustness to climate-induced movement and recruitment

patterns (Hulson et al., 2013). Although neither spatial assess-

ment approach was adopted for management advice, both models

helped improve understanding of stock structure and inform spa-

tial management decisions. Despite most developments involving

box-transfer movement models, applications of ADR models to

skipjack tuna were also expanded to integrate fishery catch and

size composition data (Senina et al., 2008) and tagging data

(Senina et al., 2020).

To overcome issues related to uncertainty in the robustness of

spatial assessment approaches, several spatially explicit simulation

and management strategy evaluation (MSE) frameworks (i.e. the

use of closed-loop feedback simulations to determine the robust-

ness of assessment-management frameworks for providing sus-

tainable harvest recommendations) were developed for both

generalized and tailored applications (Berger et al., 2017b; Punt,

2019a,b). The majority of simulation studies have compared the

robustness of spatially explicit assessment approaches to spatially

aggregated counterparts, often demonstrating that spatial models

are more robust to uncertain population structure, demographic

heterogeneity, and connectivity (e.g. Cope and Punt, 2011;

Carruthers et al., 2015; McGilliard et al., 2015; Punt et al., 2015).

In particular, implementation of marine protected areas is highly

problematic for non-spatial assessment models, whereas spatially

explicit approaches have been able to adequately address the fish-

ery and population spatial structure that results (Pincin and

Wilberg, 2012; McGilliard et al., 2015; Punt et al., 2016).

Although MSEs have demonstrated that non-spatial assessment

may perform adequately when combined with robust harvest

strategies, spatial assessments tend to provide more preferred

management outcomes across a wider range of uncertainties

(Dichmont et al., 2006; Ying et al., 2011; Benson et al., 2015, Punt

et al., 2017).

However, acceptance of spatially explicit assessments as the ba-

sis for developing fisheries management advice was impeded by a

number of factors including increased model complexity, lack of
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spatially resolved data or reduced sample sizes when data was

broken down by populations or areas, limited understanding by

managers and stakeholders, uncertainty regarding model robust-

ness, and institutional inertia (Berger et al., 2017b; Punt,

2019a,b). For instance, spatial models for European hake

(Merluccius merluccius; Drouineau et al., 2010; Vigier et al., 2018)

and Atlantic bluefin tuna (Taylor et al., 2011; Morse et al., 2020)

were introduced over a decade ago (almost three decades in the

case of bluefin tuna) but are still not directly used for manage-

ment decisions. Although data limitations remain a primary im-

pediment in many instances, integrated modelling frameworks

are often robust to sparse data (e.g. data are not needed for every

area and year combination; Maunder and Punt, 2013), tagging

data are not always required (Miller et al., 2008; McGilliard et al.,

2015) and tag releases can be performed sporadically (Goethel

et al., 2019). Additionally, spatial models of intermediate com-

plexity (e.g. accounting for a spatial structure without movement)

can still often perform better than ignoring spatial structure

completely (Kerr et al., 2017; Cadrin et al., 2019). The advance-

ment of spatially structured stock assessment models was recog-

nized by a session on spatial complexity at the World Conference

on Stock Assessment Methods (ICES, 2013; Cadrin and Dickey-

Collas, 2014), where we were coincidentally fortunate to hear

Sidney Holt’s perspectives on the topic of applying more realistic

models for stock assessment (Figure 3).

Application phase (�2015–Present)
Over the last 5 years a number of factors have led to the promo-

tion of spatially explicit assessments for the basis of fisheries man-

agement advice including: better understanding of the

importance of population structure, improved techniques for

stock identification, a variety of applications demonstrating the

feasibility of spatial assessment models, and simulation work il-

lustrating the improved robustness of spatially explicit models

compared to non-spatial counterparts (Berger et al., 2017a,b;

Punt, 2019a,b; Cadrin, 2020). In the most thorough review of the

literature on spatial assessment approaches to date, Punt (2019a)

noted that prior to 2010 only a handful of spatially explicit

assessment models had been utilized as the basis of management

advice, mainly for large pelagic species in the Indian and Pacific

oceans. Although it is not surprising that most applications in-

volved wide-ranging and highly mobile species, recent research

has clearly demonstrated that spatial structure can be as impor-

tant for less mobile reef and groundfish populations (Cadrin

et al., 2019). However, Punt (2019a) goes on to illustrate that,

since 2010, there has been a proliferation of spatial assessments

for coastal species, such as snapper, rockfish, coastal pelagics, and

invertebrates, which have been used for management advice

across the globe (e.g. Australia, New Zealand, South Africa, the

United States, and Canada). After more than 60 years, it appears

that fisheries assessment and data collection techniques have

evolved to adequately address the potential pitfalls caused by spa-

tial structure and connectivity, as outlined by Beverton and Holt

(1957).

Implications for violation of and recent
modifications to Beverton and Holt’s movement
model assumptions
Movement model assumptions have been adapted over the last

six decades from the simple diffusion models of Beverton and

Holt (1957) to account for the complex movement patterns and

spatial population structures that are now widely observed in

aquatic populations. However, best practices for spatial stock as-

sessment, identified through application and simulation testing,

are generally consistent with Beverton and Holt’s (1957) move-

ment models and associated assumptions (Goethel et al., 2011;

Punt, 2019b). The performance of stock assessments largely

depends on accurate representation of spatial extent and struc-

ture, in which spatial strata reflect patterns of variation in the fish

population and the fishery (Cadrin et al., 2019; Cadrin, 2020).

For instance, Berger et al. (2021) demonstrated that misalignment

of management and population boundaries led to biased area-

specific assessments. Accurate stock identification and boundary

alignment is a prerequisite to robust assessment performance, but

adequately representing spatial population structure, fishery dis-

tribution, and connectivity among population units is often also

necessary (Berger et al., 2017; Punt, 2019a). Although integrated

ADR models have been developed (e.g. Senina et al., 2008, 2020),

the box-transfer model, which is directly based on Beverton and

Holt’s (1957) random diffusion models, still forms the basis of

most spatial stock assessment approaches. Porch (1998) provided

one of the few explorations of the bias associated with violating

the box-transfer random diffusion assumptions in spatial assess-

ments by utilizing an ADR framework to simulate the dynamics

of two populations emulating Atlantic bluefin tuna. The box-

transfer assessment model (e.g. VPA 2-Box) performed well un-

der high mixing scenarios, but performance was similar to that of

models that ignored connectivity, particularly at low movement

levels. However, the spatial assessment model was fit to

temporally aggregated tagging data, which may have impeded

performance. Simulation–estimation experiments that specify

box-transfer movement in both the operating and assessment

models suggest that spatial models are often robust to the under-

lying connectivity dynamics, unless they mis-specify the primary

pattern of movement (e.g. ontogenetic or time-varying move-

ment; Carruthers et al., 2015; Goethel et al., 2015b, 2020; Lee

et al., 2017). Furthermore, the inclusion of tagging data (by re-

lease cohort) often improves the performance of spatial
Figure 3. Sidney J. Holt at the 2013 World Conference on Stock
Assessment Methods (WCSAM; ICES 2013).
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assessments, particularly for estimating complex movement pat-

terns, but care must be taken to adequately model important tag

recovery processes (e.g. reporting rate, tag loss, tag mortality, and

tag mixing; Maunder, 2001; Carruthers, 2011; Hulson et al., 2011,

2013; Goethel et al., 2015b, 2019; Vincent et al., 2017, 2020).

Similar studies have demonstrated that spatial models appear ro-

bust to misspecification of both the number of areas modeled

(Punt et al., 2018) and assumptions regarding the underlying spa-

tial population structure (e.g. misdiagnosing a single population

with spatial heterogeneity as a metapopulation and vice versa;

Bosley et al., 2019).

The understanding of connectivity dynamics and spatial popu-

lation structure of marine species is evolving. Improved knowl-

edge of spatial processes necessitates expansion and adaptation of

the underlying assumptions of spatial models to address the vari-

ety of potential drivers of connectivity, while also carefully

addressing the assumptions associated with movement parametri-

zations and exploration of their robustness when these assump-

tions are violated. Furthermore, a better understanding is

required of whether box-transfer approaches can adequately re-

flect net population-level movement resulting from directed

movements of individuals using individual-based models (IBM),

ADR frameworks, or other approaches that can simulate fine-

scale dynamics and the complex movement patterns that result

from the behaviour of individuals (e.g. by incorporating the

movement ecology paradigm, Nathan et al. 2008, into fisheries

spatial simulation tools). Similarly, using a continuous-time ADR

simulator (e.g. SEAPODYM; Senina et al., 2020) could further

elucidate whether the continuous-time transport coefficient

movement model (e.g. Miller and Anderson, 2008) may better re-

flect the continuous movement dynamics of marine species com-

pared to discrete, instantaneous box-transfer assumptions.

As noted by Beverton and Holt (1957), accounting for directed

movement, whether due to dominant currents, attraction to pre-

ferred habitat, or life history migrations (e.g. related to ontogeny

or spawning), represents a critical necessary alteration to the ran-

dom diffusion model for many species. The natal homing as-

sumption (also termed overlap or natal fidelity), wherein there is

spatiotemporal overlap of populations, but no interbreeding

occurs, has been widely applied to account for return spawning

migrations to natal populations (e.g. Porch et al., 2001; Taylor

et al. 2011; Guan et al., 2013; Li et al., 2015, 2018; Vincent et al.,

2017). Accounting for more fine-scale contingent structure or

learned migration behaviour (e.g. entrainment) may also be feasi-

ble but has yet to be incorporated into full estimation spatial as-

sessment models (Secor et al., 2009; Kerr et al., 2010; MacCall

et al., 2018) and may require alternate movement processes (e.g.

correlated random walks; Codling et al., 2008; Smouse et al.,

2010).

Habitat preference functions (i.e. the intrinsic attraction to a

region based on extant environmental properties or distance be-

tween regions) or environmental covariates are increasingly being

used to help inform time-varying and age-based movement esti-

mates in spatial stock assessments (e.g. Porch, 2004; Su et al.,

2012; Fu et al. 2017; Mormede et al., 2020). Functional forms,

such as linear ramps or linking movement to maturity, reduce the

number of estimated parameters while enabling incorporation of

ontogenetic movement (e.g. Bull et al., 2012; Methot and Wetzel,

2013). Similarly, gravity models, which derive movement param-

eters from estimates of regional residency, can help reduce the

number of parameters being estimated either for time-varying or

age-varying models (e.g. Carruthers et al., 2011; Taylor et al.,

2011), and are easily extended to account for directed or age-

based movement patterns (e.g. through addition of viscosity

terms or functional forms; Carruthers et al., 2015). Density-de-

pendent movement assumptions can account for time-varying di-

rected connectivity patterns by relating the probability of

movement to the assumed region-specific carrying capacity and

relative abundance among areas (MacCall, 1990; Bull et al., 2012;

Goethel et al., 2015b, 2019, 2020). Goethel et al. (2020) demon-

strate that box-transfer models of intermediate complexity (e.g.

estimating ontogenetic and time-varying connectivity using age-

and time-blocked movement parameters) can adequately account

for complex and unknown movement patterns (e.g. density-de-

pendent, ontogenetic, and climate-induced distributional shifts).

However, further simulation analysis is required to determine

whether the variety of alternate movement parametrizations can

be feasibly applied and if they are more robust compared to sim-

ple box-transfer assumptions.

Discussion
It is often easy to take our predecessors’ accomplishments for

granted and overlook important lessons they learned. Scientific

progress is an iterative process, which requires understanding the

historical development of knowledge such that new hypotheses

can be built, tested, and refined to build upon and improve exist-

ing paradigms. As Schnute and Richards (2001) poignantly note:

“From a historical perspective, mathematical fishery models

have a natural evolution that begins with the attempt to

make sense of biological and catch data collected from fish-

eries. Pieces of the puzzle have accumulated from a diverse

literature on growth, mortality, recruitment, and the effects

of fishing. By combining these pieces into a unified whole,

the scientist obtains a modern fishery model, and this

achievement feels like progress. Because the assumptions

have strong historical roots, the modeller can easily ignore

their role as rather arbitrary constraints and focus instead

on the seemingly worthy goal of integrating the known data

into a unified whole. . .[However] proper use of fishery

models comes from a frank recognition of their

limitations.”

Utilizing previously developed models without understanding

their historical development and associated limitations can be

problematic, often leading to models being applied outside the

limits of the assumptions for which they were originally devel-

oped, and, eventually, inaccurate outputs or model failure.

So, what have we learned from a historical review of Beverton

and Holt’s (1957) movement models? First and foremost,

assumptions matter, especially when developing spatially explicit

models (Hoshino et al., 2014; Berger and Goethel, 2017; Riecke et

al., 2019). Many of the underlying assumptions of spatial fisheries

models are defined by the tenets outlined in Beverton and Holt

(1957), in particular that fish movement can be quantified to em-

ulate the random diffusion of a gas particle. Movement of demer-

sal fishes, such as most flatfishes, generally conform to the

random diffusion assumption. However, Beverton and Holt

(1957) cautioned that many species do not fit this assumption

due to non-random movement patterns, because of behavioural

tendencies like schooling or long-distance directed migrations to

spawning areas. Alternate assumptions regarding movement have

Beverton and Holt spatial models 11

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab021/6288531 by N

O
AA C

entral Library user on 16 June 2021



been developed for these situations, including habitat attraction

(e.g. Porch, 2004; Mormede et al., 2020) and natal homing models

(e.g. Porch et al., 2001; Bull et al., 2012), but careful testing of the

feasibility and appropriateness of incorporating alternate hypothe-

ses is required. It is not necessary for spatial models to perfectly re-

flect the underlying dynamics (e.g. the number of areas,

population structure, or movement parametrization) for them to

provide adequate, and improved (compared to non-spatial assess-

ments) management advice (Punt et al., 2018; Goethel et al., 2020).

However, the box-transfer approach should not be blindly ap-

plied without first exploring information on stock structure and

migration behaviour. Using inaccurate and outdated assumptions

can cause a severe underestimation of uncertainty (Hilborn and

Liermann, 1998) and contradicts the attitude of the pioneers of

fisheries science whom sought to challenge all theories that were

treated as dogmatic. We suspect that Ray Beverton and Sidney

Holt would agree that treating any fisheries model as infallible

invites misuse or misspecification. When new data become avail-

able through technological advances (e.g. Vessel Monitoring

Systems, electronic tags, or genetic methods) or breakthroughs in

understanding of population processes occur (e.g. evidence of

complex behaviour), we are compelled to incorporate these new

sources of information and subsequently test model performance

and the appropriateness of associated assumptions. However,

model refinement requires a thorough understanding of the basic

assumptions to better understand how they can be accurately ap-

plied and altered. All models are necessarily a gross simplification

of the natural processes that are being emulated (Schnute and

Richards, 2001). But, because spatial stock assessments can more

realistically reflect population structure, fishery and resource dis-

tribution, and connectivity dynamics, there is an increased proba-

bility that resultant advice will better enable sustainable fisheries

management (Punt et al., 2017; Cadrin et al., 2019; Berger et al.,

2021).

There is also much to learn from historical applications of spa-

tial models that can help avoid reinventing the wheel. For in-

stance, Aldenberg (1975), in one of the first spatially explicit

assessment explorations, noted that large productivity differences

among regions was likely to bias recruitment estimates in spatial

assessment models. However, seldom is Aldenberg (1975) cited

for noting this important performance issue with spatially explicit

assessment models, which has been subsequently proven correct

based on simulation (e.g. Goethel et al., 2015b; Vincent et al.,

2017). Clearly, there is a wealth of insight that can be garnered by

modern assessment scientists from deeper exploration of histori-

cal spatial models like those developed by Beverton and Holt

(1957). Rothschild (2015) supports this assertion, stating that

“A coherent development of knowledge requires an under-

standing of its provenance. Without such provenance, the

student is forced to consider each and every paper indepen-

dently, constraining a refined criticism and the scientific

structure of the ideas that we are attempting to advance . . ..
How can a field progress if the pillars on which it is built

are not read or acknowledged?”

Future directions
Beverton and Holt (1957) could not have foreseen the variety and

complexity of many modern stock assessment modelling

approaches that developed from their foundational work.

However, their relatively short section on spatial modelling is

likely to continue to influence many future facets of fisheries sci-

ence. For instance, the rapidly increasing application of spatio-

temporal models that account for spatial autocorrelation using

habitat and species associations (e.g. Thorson, 2019; Cao et al.,

2020) share basic tenets with Beverton and Holt’s (1957) continu-

ous time, continuous space dispersion model altered to account

for external controls (Planque et al., 2011).

In the future, we anticipate that the increasing availability of

high-resolution spatial data (e.g. tracks of individual animals

from satellite and archival tags and precise time and location of

fishing from VMS data) will continue the trend of modelling con-

tinuous spatial processes (e.g. the dispersion and transport coeffi-

cient models), particularly using full spatiotemporal models (e.g.

Cao et al., 2020; Mormede et al., 2020). The increased quantity

and spatiotemporal precision of these data will allow finer model

resolution, while improving estimation capabilities and, thereby,

removing much of the impetus for utilizing box-transfer

approaches (i.e. limited, coarse data). We also envision increased

cross-platform development of spatiotemporal models where, for

instance, modelling approaches become more blended (e.g. inte-

gration of spatial autocorrelation approaches used in species dis-

tribution models into spatially stratified modelling frameworks).

Additionally, the need to account for spatial processes at each

stage of the stock-recruit process (e.g. spawning, egg, larval, set-

tlement, and pre-recruitment phases; Subbey et al., 2014;

Thorson et al., 2015) is being recognized through paradigm shifts

in ecological understanding, such as the reproductive resilience

hypothesis (Lowerre-Barbieri et al., 2017). Accounting for spatial

dynamics during larval, juvenile, and adult stages is critical to

fully understanding how spatial population structure evolves

(Smedbol and Stephenson, 2001; Frisk et al., 2014), which has led

to the development of full life cycle models embedded within sta-

tistical parameter estimation frameworks (e.g. Bentley et al., 2004;

Archambault et al., 2016). Advances in hydrodynamic modelling

and collection of early life history data should further expand the

application of spatial full life cycle models that can incorporate

variable spatiotemporal resolution (e.g. embedding larval IBMs

within spatial stock assessments to better address spatial patterns

in stock-recruit dynamics).

Developing spatially structured stock assessments remains

challenging because of model complexity, but spatial structure

can better represent heterogeneous populations, and estimating

movement can help to interpret data more accurately. Some sim-

plifying assumptions, like those suggested by Beverton and Holt

(1957), may be needed for spatial stock assessments (e.g. condi-

tioning movement on extant environmental conditions and habi-

tat preference or biological factors, such as maturity or age).

However, alternative movement assumptions and integrating all

information available appear to be possible solutions to support-

ing model complexity. For example, time-varying movement can

be informed by the integrated analysis of habitat preference along

with fishery and tagging data (e.g. Porch, 2004; Su et al., 2012; Fu

et al. 2017; Mormede et al., 2020).

The advancement of stock assessment methods towards inte-

grated modelling has many scientific advantages (Maunder and

Punt, 2013), but these advanced models are more difficult to

communicate to fishery managers and stakeholders (Regular

et al., 2020). Thus, improved scientific communication is needed

(Lynch et al., 2018), particularly for complex spatial models that
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include connectivity (Berger et al., 2017). Better understanding of

spatial models by researchers, including basic theory and assump-

tions, is expected to facilitate more effective communication with

scientists, fishery managers, and fishery stakeholders, which may,

in turn, help to confront the institutional inertia that often

impedes the application of spatial models (Berger et al., 2017;

Punt, 2019a). Better understanding of spatial models is also

expected to improve collaboration with fishermen, who have

valuable information on movement patterns that can be consid-

ered to improve stock assessments (Nies, 1992; Johannes et al.,

2000; Murray et al., 2008). Integration of this stakeholder local

ecological knowledge through increased participatory modelling

and cooperative research initiatives, can help develop appropriate

modelling assumptions (e.g. Duplisea, 2018), identify primary

components of spatial dynamics that need to be considered, and

generate mutual learning of spatial complexities (Goethel et al.,

2019). Ultimately, the MSE framework, conducted with full stake-

holder input and likely utilizing agent- or individual-based spatial

operating models that incorporate complex movement behaviour

and the vast array of spatial ecological knowledge, will help iden-

tify minimally complex spatial assessment model configurations

that can provide robust management advice with the often spo-

radic or limited data available in many fisheries.

Although the ability to incorporate spatial structure and connec-

tivity is now considered a primary requirement for the next genera-

tion of generic stock assessment platforms (Cadrin et al., 2020; Punt

et al., 2020), operational application of spatial stock assessment

models remains limited, often lagging technological advancements

and ecological knowledge (Berger et al., 2017a). In the near future,

we believe that rapidly evolving advancements in spatial ecology and

spatially explicit data collection will aid in further development and

application of operational spatial stock assessments.

Conclusion
In 1947, Michael Graham (Director of the Lowestoft, UK Fisheries

Laboratory) tasked Sidney Holt and Ray Beverton with developing

a systematic approach to fishery modelling (Beverton and

Anderson, 2002; Holt, 2008, 2020). Considering Graham’s accom-

plishments on the topic, he could have taken on the task. However,

we suspect that Beverton and Holt (1957) is so forward looking,

because they were younger (21 and 24 years, respectively), lacked

any preconceived bias, and were not yet entwined in the fishery

management treadmill (i.e. Graham provided four uninterrupted

years to perform the research; Anderson, 2011; Holt, 2008, 2020).

We believe that Beverton and Holt would be proud of the diverse

fields that their spatial framework has influenced in recent years

and the enduring legacy that the brief section on spatial approaches

in Beverton and Holt (1957) has had on both fisheries and terres-

trial quantitative modelling. In his treatise on the historical devel-

opment and current state of fisheries population modelling, Quinn

(2003) culminates with the question: “I wonder what things will be

like 50 or 100 years from now. Will the names of Baranov,

Beverton and Holt, and Ricker still be known?” We suggest, based

on their novel and forward-thinking exploration of spatial struc-

ture and movement models alone, that the answer in regards to

Beverton and Holt will be an emphatic, “yes!. ”
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